Thermal Conductivity and Specific Heat

section epub:type=”chapter”>



Thermal Conductivity and Specific Heat


32.1 Introduction


In Chapter 22, we saw that ions (or atoms) can diffuse down a concentration gradient, provided they are sufficiently mobile. This process was described by Equation (22.2),


J=Ddcdx



dc/dx is the concentration gradient in m− 4, J is the flux of ions or atoms (the number of ions or atoms diffusing down the concentration gradient per second per unit area) in m− 2 s− 1, and D is the diffusion coefficient in m2 s− 1.


The same kind of equation can be used to describe the fact that heat flows down a temperature gradient (see Figure 32.1),


q=KdTdx



si2_e  (32.2)


Figure 32.1
Figure 32.1 One-dimensional heat flow (steady-state conditions).

dT/dx is the temperature gradient in K m− 1, q is the heat flux (the heat flowing down the temperature gradient per second per unit area) in J m− 2 s− 1, and K is the thermal conductivity in W m− 1 K− 1 (W = J s− 1).


We have already looked at one application of thermal conductivity in Section 30.3—the conduction of heat away from the sliding surfaces between snow and skis (or snow and sledge runners). We saw another example in Section 17.4, where we used thermal insulation materials (polymer foam and mineral wool) to slow down the rate of heat transfer from the environment to liquid methane at − 162°C. K is a critical parameter in a vast range of applications, from thermal insulation in buildings to heat shields for spacecraft.


Equation (32.2) describes the one-dimensional flow of heat through a solid under steady-state conditions—the temperature at any given point within the solid does not change with time (as in Section 17.4, for example). Under nonsteady-state conditions, the temperature at any given point within the solid does change with time (see Figure 32.2), and the heat flow equation becomes


Tt=λ2Tx2



si3_e  (32.3)


where t is time, and λ = K/ρC is the thermal diffusivity of the material. It has dimensions of m2 s− 1. ρ is the density in kg m− 3, and C is the specific heat in J kg− 1 K− 1.


Figure 32.2
Figure 32.2 One-dimensional heat flow (nonsteady-state conditions).

Worked Example 1


We can derive Equation (32.3) quite simply, by looking at Figure 32.2. We take a volume element of 1 × δx (the “1” is because the cross section of the conducting bar has unit area). In time δt, an amount of heat qin δt enters the volume element from the left-hand side, and an amount of heat qout δt leaves the volume element from the right-hand side. qin δt > qout δt, because the temperature gradient entering the element is greater than leaving the element. The difference in heat, qin δt − qout δt goes into warming up the volume element by amount δT, in other words some of the heat passing through the solid is “diverted” into heating it up. The equation for this is


qinqoutδt=ρCδTδx



si4_e


The density term is needed because we are calculating the heat required to warm up a volume, not a mass (C on its own can only be used for a mass). ρC has units of J m− 3 K− 1. Cross multiplying,


δTδt=qinqout1ρCδx



From Equation (32.2),


qinqout=KdTdxdTdxd2Tdx2δx=Kd2Tdx2δx



si6_e


Substituting for (qin – qout) leads directly to Equation (32.3).


32.2 Thermal Conductivities and Specific Heats


Approximate experimental values for K, C, and λ are shown in Table 32.1. These are generally measured at, or fairly close to, 300 K. Since K, C, and λ can change with temperature, in any thermal design problem it may be necessary to obtain experimental data for the particular temperature range under consideration.



Table 32.1


























































































































































































































































































Data for Thermal Conductivity (K, in W m− 1 K− 1), Specific Heat (C, in J kg− 1 K− 1), and Thermal Diffusivity (λ = K/ρC, in m2 s− 1; ρ = Density in kg m− 3)
Material K C λ (Average)
Metals
Silver 425 234 1.7 × 10− 4
Zinc 120 390 4.3 × 10− 5
Zinc die-casting alloy 110 420 3.9 × 10− 5
Magnesium 156 1040 8.6 × 10− 5
Aluminum 240 917 9.7 × 10− 5
Aluminum alloys 130–180 900 6 × 10− 5
Copper 397 385 1.2 × 10− 4
Copper alloys 20–210 400 3 × 10− 5
Iron, carbon steel, low-alloy steel 40–78 480 1.6 × 10− 5
High-alloy steels 12–30 500 5 × 10− 6
Stainless steels 12–45 480 8 × 10− 6
Nickel 89 450 2 × 10− 5
Superalloys 11 450 3.1 × 10− 6
Titanium 22 530 9.2 × 10− 6
Ti-6Al 4V 6 610 2.2 × 10− 6
Controlled-expansion alloys
    Kovar (Nilo-K), 54Fe29Ni17Co 17 460 4 × 10− 6
    Invar, 64Fe36Ni 13 515 3 × 10− 6
Ceramics and glasses
Cement and (un-reinforced) concrete 1.8–2 1550 5 × 10− 7
Soda glass 1 990 4 × 10− 7
Alumina 25.6 795 8 × 10− 6
Zirconia 1.5 670 4 × 10− 7
Limestone 2.1 920 8 × 10− 7
Granite 3 800 1.4 × 10− 6
Silicon carbide 4–20 740 5 × 10− 6
Borosilicate glass 1 800 6 × 10− 7
Silicon nitride 10 650 6 × 10− 6
Porcelain 1 800 5 × 10− 7
Diamond (natural, high purity) 2500 510 1.4 × 10− 3
Polymers (thermoplastics)
Polypropylene (PP) 0.2 1900 1 × 10− 7
Polyethylene, high density (HDPE) 0.4 2100 2 × 10− 7
PTFE 0.25 1050 1 × 10− 7
Nylons 0.2–0.25 1900 1 × 10− 7
Polystyrene (PS) 0.1–0.15 1400 8 × 10− 8
Polycarbonate (PC) 0.2 1100 1 × 10− 7
PMMA (Perspex) 0.2 1500 1 × 10− 7
Polyvinylchloride, unplasticized (UPVC) 0.15 1000 1 × 10− 7
Polyetheretherketone (PEEK) 0.25 320 6 × 10− 7
Polymers (thermosets/resins)
Epoxies 0.2–0.5 1800 2 × 10− 7
Polyesters 0.2–0.24 2000 1 × 10− 7
Phenol formaldehyde 0.12–0.24 1600 1 × 10− 7
Polymers (rubbers/elastomers)
Silicone 0.14 1200 1 × 10− 7
Nitrile butadiene (NBR) 0.24 1350 1 × 10− 7
Fluorocarbon (Viton) 0.2 950 1 × 10− 7
Polyisoprene, polybutadiene 0.1 2000 5 × 10− 8
Polymer-matrix composites
Glass-filled nylons (30% glass by weight) 0.3 1600 1 × 10− 7
Tufnol (paper or woven cloth laminated phenolic resin) 0.36 1500 2 × 10− 7
Porous materials
Wood 0.05–0.25 2500 2 × 10− 7
Cork 0.04 1900 1 × 10− 7
Mineral wool 0.04 1000 2 × 10− 6
Foams (PUR, phenolic) 0.02 1650 3 × 10− 7
Expanded PS 0.036 1400 1 × 10− 6

Aug 9, 2021 | Posted by in General Engineer | Comments Off on Thermal Conductivity and Specific Heat
Premium Wordpress Themes by UFO Themes